2019
08-23

[3d打印]当年很火的3D打印技术,为什么这几年突

  差距不可小觑,但也并非完全不可逾越。近年来科技部、工业和信息化部先后出台相关政策,对3D打印发展给予了很多政策支持。其中,由颜永年领衔创办的永年激光科技有限公司,设计出LCD系统集成,首次提出将激光选区熔化、激光熔覆LCD设备和大功率激光器、大数据、工业机器人等集成在同一平台上实现“互联互通”。据悉,这一设计采用先进数控系统,处于国内领先水平。

  人们对于3D打印的认识已经从概念阶段向应用阶段转变。未来,3D打印的发展趋势是速度更快、精度更高、成本更低、应用更广、操作更简便

  “随着HP(惠普)、GE(美国通用电气)、西门子、霍尼韦尔等一大批传统制造业企业进入3D打印领域,未来几年,3D打印的优势将集中爆发。不过,表面的喧嚣并不能掩盖我国缺乏核心技术、核心产品、核心服务的事实。”中国3D打印技术产业联盟执行理事长罗军表示。

  天下武功唯快不破。颜永年表示,3D打印是否具有持久的生命力主要取决于两方面:一是成型速度,二是成本。今后,批量化制造将成为3D打印发展的新趋势。如果几十个小时甚至几天才能打印一个零件,那么3D打印也就仅能用于科研。“因为没有速度就没有生命力,谁会要慢吞吞的东西?”颜永年说。

  GE航空集团非常著名的Leap发动机配套燃油喷嘴,便是3D打印应用的一个典型案例。这一燃油喷嘴利用3D打印技术加工制作,把20个零部件整合为一个部件,设计之后重量降低了25%,耐用性增加了5倍,燃油效率提高了百分之十几。

  应用是发展动力

  不仅是航空航天,大型结构件和精密件制造等方面,也存在大量3D打印需求。颜永年表示,3D打印“所见即所得”的特性,非常适用于制造微米级—毫米级的内流道复杂结构,这种内流道采用传统加工方式是做不出来的。

  北京三帝科技股份有限公司旗下北京隆源成型自主研发的激光金属铺粉3D打印机。 本报记者 沈 慧摄

  现实的确令人振奋。以我国C919大型客机机头工程样件研制所需的钛合金主风挡窗框为例,如果从欧洲订购至少需要两年才能拿到零件,而4个框,每个框的锻造模具费需要50万美元。采用3D打印技术后,从制造零件到装上飞机,北京航空航天大学王华明团队仅用了55天,并且零件费用还不到模具费的五分之一。

  3D打印(增材制造技术),是CAD(计算机辅助设计)模型直接驱动的、可以完成任意复杂结构的制造方法总称。“以前谈3D打印,那是阳春白雪,是生产系统的配角。”“中国3D打印第一人”、清华大学教授颜永年说,3D打印发展到今天,已经慢慢介入到传统制造业领域。

  3D打印是否具有持久的生命力主要取决于两方面,一是成型速度,二是成本。今后,批量化制造将成为3D打印发展的新趋势。专家表示,“没有速度就没有生命力”

  从技术工艺、材料、软件、应用等几个指标来看,我国3D打印整体上与国际的差距还非常明显。要想发展壮大,3D打印设备的核心零部件国产化率必须提高

  “3D打印是一项基础技术,与其他技术融合发展后,可以在很多领域得到广泛应用。”罗军认为,人们对于3D打印的认识已经从概念阶段向应用阶段转变,这说明3D打印产业发展指日可待。未来,3D打印的发展趋势是速度更快、精度更高、成本更低、应用更广、操作更简便,其发展方向是终端产品生产、智能化、批量化等。

  究其原因,罗军分析,一是成本偏高,二是认识不够,三是部分打印机的稳定性、精度、产品强度不能满足生产要求。“尽管目前应用在3D打印领域的材料已达1000多种,但是与传统制造业相比,还远远不够。尤其部分尼龙材料、陶瓷材料、光敏树脂材料和钛合金等冶金粉末材料基本依赖进口,这严重影响了我国3D打印产业的健康发展。”罗军说。

  速度和成本是关键

  大批传统制造企业纷纷进入3D打印领域——3D打印从概念走向应用

  近日,中国科学院科研人员在瑞士利用欧洲失重飞机,成功完成了微重力环境下陶瓷材料立体光刻成形技术试验,为我国空间站、深空探索等任务中实现“太空3D打印”拓宽了技术路线。这是团队成员完成飞行任务后合影留念。 (新华社发)

  凭借着对原材料灵活叠加利用的优势,3D打印被《经济学人》多次推上封面,并被寄予“掀起第三次工业革命”的重任。有学者认为,它将从源头颠覆传统制造业。对此,颜永年并不赞同,“3D打印不会取代传统的技术,而是一种结合,是对传统行业传统技术的提升”。

  而对于生物制造,这一3D打印最前沿的领域,颜永年认为,基于3D打印技术的细胞三维受控组装工艺,是生物制造中最为核心的技术,其目标为具有新陈代谢特征生命体的成形和制造。前不久,国内科学家们就使用3D打印技术构建生物支架,通过取用孩子耳朵上的软骨细胞,为5名天生具有耳朵缺陷的小孩安装了新的耳朵。

  在颜永年看来,中国3D打印发展壮大,打印设备的核心零部件国产化率还需提高。“虽然没有必要所有零部件全都自己造,但若完全依赖进口,缺少相应配套能力,这是一件危险的事情。”他以激光振镜举例,我国进口一台设备需要30多万美元,而且需要提前付全款,半年后才能交货。

  英国纽卡斯尔大学近日宣布,研究人员通过干细胞中提取研发的“生物墨水”,利用3D打印技术打印出了世界首个人工角膜。无独有偶,荷兰埃因霍温市也宣称,正着手运用3D打印技术建造5栋混凝土房屋,建成后将成为全球首批可正式用于居住的3D打印房屋——3D打印再次迎来发展的春天

  自主是努力方向

  当3D打印技术走出实验室,该何去何从?应用,这是业界给出的答案。“3D打印的主体市场是航空航天,这是一个永不衰败的市场,放弃了它就意味着没有抓住重点。”颜永年说。

  理想很美好,现实却有点骨感。“目前,从技术工艺、材料、软件、应用等几个指标来看,我国3D打印整体上与国际的差距还非常明显。”罗军拿应用这一指标举例,美国占比接近一半,主要集中在军工领域;欧洲占比约为四成,主要集中在民用领域;我国占比不到一成。

  来源:经济日报

  当然,降低成本也是3D打印亟待解决的另一道难题。“比如现在采用的材料中,合金粉末比钢材还贵,这导致其成本比传统制造业还高,那就没有竞争力。”颜永年说。

  这与华中科技大学教授张海鸥的看法不谋而合。“3D打印,现如今已不再是单纯的打印模型和样件,更多是直接制造功能性产品,它必将与传统产业展开激烈竞争,并带来新的产业革命。”张海鸥表示。

  未来,中国3D打印将何去何从?罗军建议从3个方面入手:一是政府积极扶持,鼓励企业搭建更多开放式应用服务平台,促进3D打印与传统产业深度融合。二是鼓励企业与国际顶尖的科研机构开展国际合作,创建国际化研发中心、联合实验室、研究院。三是鼓励科研院校、职业院校深化校企合作,开设3D打印学院(专业),培养更多3D打印应用型人才。“国内3D打印行业还需进一步抱团发展,形成合力。”罗军强调。(记者 沈 慧)

  作为一项前沿、颠覆性技术,3D打印近年来大放异彩,不少国家纷纷布局并将其上升为国家战略。这源于乐观的前景。根据国际数据公司(IDC)的最新展望报告,全球3D打印技术相关支出在2018年预计达到120亿美元,到2021年,全球3D打印行业支出有望达到200亿美元,5年复合增长率达到20.5%。

  主承办

  影片《十二生肖》中,利用3D打印技术快速的进行了兽首模型的1:1复制。

  5) 2005年,英国巴恩大学的Adrian Bowyer发起了开源3D打印机项目RepRap,目标是通过3D打印机本身,打印出另一台3D打印机。2008年,第—个基于RepRap的3D打印机发布,代号为“Darwin”,它能够打印自身50%元件。

  9、仿生人工肝组织

  分形图形极不规则、分布不均,但在各种放大和缩小的尺度上都有着近乎相似的形状。利用增材制造设备制造的分形咖啡桌由一个树状的分形图案构成,它既有艺术美和数学内涵,又有实际使用价值。

  14、制造业

  饰品的传统加工方法不仅浪费材料,而且工艺复杂,成本高。激光选区熔化和电子束选区熔化工艺是“增材制造”,它适合于加工形状复杂的饰品,不仅节约材料,而且节能环保。

  1994年,清华大学就采用中科院遥感所的地球3D数据,将地球仪表面的高程差数据按比例扩大,在分层实体制造(LOM)设备上制造具有各种地形的三维地球形貌的地球仪。

  熔融沉积制造(FDM)又称为熔丝沉积制造等。该方法利用电加法等热源熔化丝状材料,由三轴控制系统移动熔丝材料,逐层堆积成形三维实体,工艺过程如下图所示。

  协办单位:中国机械工程学会

  13、建筑业

  欢迎走入3D打印的世界!

  学生利用网络上的地形图,自行进行特定地点的3D地形打印

  5、3D打印技术方法一

  5、医疗行业

  11、考古和文物保护

  4、“分形”咖啡桌

  影视业很早就引入了3D打印技术来进行道具设计和制造。Legacy Effects特效公司使用Objet公司的3D打印机制作了1:5大小的《铁甲钢拳》中机器人的模型。

  美国德雷塞尔大学的研究人员通过对化石进行3D扫描,做出了适合研究的3D模型。

  3D打印技术是一个很有潜力的产业,在航空航天业、汽车工业、现代制造业、医学和生物工业技术等领域,它都蕴含着很大的发展空间,同时在个人消费品领域里涉及个性化创意的应用以及数量较大的生活用品制造方面,它也有着良好的发展前景。

  1) 熔融沉积制造(FDM)

  西安交通大学根据自然肝脏的血管网络的结构与尺寸设计人工肝组织支架内部的微管道系统,然后利用3D打印制造出仿生的人工肝组织支架,用于构建大尺寸人工活性肝组织研究。下图为根据自然肝脏血管网络设计与制造的仿生肝组织支架微管道。

  6、定制化上颌骨替代物修复窦腺癌引起的骨缺损

  史密森尼博物馆因为原始的托马斯杰弗逊要放在弗吉尼亚州展览,于是博物馆用了一个巨大的3D打印替代品放在了原位置。

  21、3D打印合成食品

  激光选区烧结(SLS)也叫选择性激光烧结、选区激光烧结等。利用高能激光束的热效应使粉末材料软化或熔化,粘接成形一系列薄层,并逐层叠加获得三维实体零件,工艺过程如下图所示。

  3、3D打印机的发展史

  8、个性化义齿3D打印

  主办单位:中国科学技术协会

  7、定制化膝关节修复骨癌引起的股骨远端缺损

  1、何为3D打印?

  1、教育产业

  三、3D打印未来

  3) 激光选区烧结(SLS)

  2013年科学美国人将“三维打印技术步入实用阶段”作为2012年十大科学新闻。认为三维打印技术将在制造业和科研领域引发一场革命。

  2) 1991年,三项快速成形制造技术投入商业生产,它们分别是Stratasys公司的熔融沉积制造(FDM)技术、Cubital公司的立体固化技术(SGC)和Helisys公司的分层实体制造(LOM)技术。

  2、远古生物模型

  3D打印的假肢

  1) 1984年美国人Charles Hull 发明3D打印。1986 年成立3D Systems 的公司。1987 年,3D Systems 开始生产第一台 3D 打印机 SLA250。

  6、3D打印技术方法二

  利用3D打印技术获得数学模型对于学生们更好地认识这些造型起到重要的辅助作用,大大提高学生的空间想象力。

  3、大型建筑

  2) 光固化成形(SLA)

  12、影视产业

  2009年,北京航空航天大学王明华团队利用激光快速成形技术制造出大型客机C919的主风挡窗框。据了解,这使中国成为迄今国际上唯一实现激光成形钛合金大型主承力关键构件在飞机上实际应用的国家。

  2) 分层实体制造(LOM)

  6) 2010年11月,第一台用3D打印机打印出整个身躯的轿车出现,它的所有外部组件都由3D打印制作完成。

  下图这个金属飞机零部件由计算机程序设计,并使用3D金属打印技术制作。后面的是旧版本,前面新版本进行了优化,重量减轻,同时保持原有的强度和其他关键性能。

  2013年情人节前夕,日本的一家3D体验馆举办教人们制作情人巧克力的活动。首先3D扫描面部表情,然后做出3D巧克力打印的原型模型,再用原型来制作巧克力模子,之后就可以将巧克力注入模子里了。

  3) 立体喷印(3DP)

  你的打印机能“打印”出一幢漂亮的房子吗?你的打印机能打出一个精细的人工心脏瓣膜吗?你的打印机能打印出你自己设计的创意笔筒吗?现在,这些问题都得到了肯定的答复,这一切都源于一项重大技术革命——3D打印技术。

  卷首语

  4) 2005年市场上首个高清晰彩色3D打印机Spectrum Z510由Z Corp研制成功。这款3D打印机能够进行高分辨率彩色3D产品的打印。

  展览地点

  某右上颌窦腺癌患者肿瘤切除手术后,面中1/3畸形并且复视明显。西安交通大学口腔医院根据病人的缺损形状与大小利用增材制造技术设计并制造了人工钛上颌骨。该替代物与病人的缺损区域配合良好,术后颜面畸形得以纠正,复视症状消失。

  布兰登最初的研究目标是打印出可生物降解的组织框架。由于布兰登使用蟹壳粉打印失败,导致他最终选择了食盐、面粉、糖、黄油和水作为原料。于是布兰登就意外的打印出了曲奇饼干。

  学生在生物课堂打印的DNA双螺旋模型

  图3

  定制化颅骨替代物修复颅骨缺损

  现代社会中,人们不断地探索外科整形、关节置换、心脏瓣膜更新、具有奇效的维生素补充剂与护肤霜。3D打印技术也许可以终止这些探索,打印所需的身体部位将帮助那些需要器官移植或已失去关节的人。

  17、配件饰品

  为了充分发挥建筑师不拘一格、无与伦比的想象力,人们利用增材制造技术,设计、制造了许多异形建筑模型。

  第四军医大学口腔医院为一位因车祸导致颅骨缺损的男性患者植入利用增材制造技术制造的颅骨修复钛板。术后患者形态美观,恢复良好。

  近日荷兰建筑事务所Universe Architecture,英国伦敦的Softkll Design 建筑设计工作室和美国的DUS 建筑事务所分别计划采用大型3D打印机创造一座“没有起点也没有终点”的莫比乌斯带观景平台(图a),一个怪异的像蜘蛛网式构件的悬臂房屋(图b)。

  MakerBot资助K-12学校的教师建立了创新课程计划。在佛罗里达州的四五年级教室里,学生自己设计产品。

  19、食品产业

  越来越多的人希望通过医疗手段治愈疾病,甚至对病变器官进行植入和更换。将来,人们将有可能直接采用增材制造的生物器官进行移植。下图为人类打印出的第一颗心脏。

  15、变废为宝,绿色环保打印

  二、3D打印的应用

  中国科技馆常设展厅三层西环廊

  3、数学立体模型

  美国航空航天局(NASA)正在研究用增材制造技术制造出更方便廉价的火箭关键部件。据NASA预测,打印的零件最快2017年上天。

  3D打印船是由高密度聚乙烯塑料制成牛奶盒打印出来的,它的成功证明了可回收牛奶盒可以回收利用并打印成真正有用的物品。

  图为圣海伦火山3D打印模型

  3D打印又称增材制造技术,是依据CAD设计数据,采用离散材料(液体、粉末、丝片、板、块等)逐层累加制造实体零件的技术。

  16、航空航天

  10、癌细胞三维结构体的3D受控组装(细胞3维打印)

  用3D打印技术制作的液氧/氢气火箭喷射器

  FDM发明者Scott Crump

  二维平面培养细胞模型缺乏体内三维细胞微环境的特征,而动物细胞模型缺乏人体特异的响应能力。细胞受控组装技术可以根据设计的结构,可控地组装生物材料和细胞单元,高效地构建大尺寸非均质(多细胞)体外仿生结构体。下图为清华大学研制的多细胞组装机及打印的癌细胞三维结构体。

  18、汽车制造

  图2

  支持单位:北京太尔时代科技有限公司

  根据 Wired 的报道,研究员 Greene 和 Aja 利用 3D 打印机成功恢复了一个在 3000 年前被打碎的瓷器狮子。 他们拍摄了瓷器的碎片,并对碎片制作 3D 模拟图,然后将其整合,做出了原物的3D模拟图,再将模拟图与同地发现的完整物品进行比对,将缺失部分以及支持结构打印出来。

  一、什么是3D打印

  Emily用一张1930年的明信片上的酿酒屋照片,利用增材制造技术,堆砌出了酿酒屋的建筑模型。

  据美国国家地理网站报道,借助3D打印技术,一只生活在3.9亿年前的软体动物近日展现在人们眼前。

  英国《每日邮报》2011年9月23日报道,世界上第一辆“3D打印汽车”在加拿大亮相。2013年2月,Urbee 2混合动力面世,全部零部件来自3D打印。

  分层实体制造(LOM)也称薄材叠层制造等。利用激光或刀具切割薄层纸、塑料薄膜、金属薄板或陶瓷薄片等片材,通过热压或其他形式层层粘接,叠加获得三维实体零件,工艺工程如下图所示。

  2、生物医疗

  3) 1996年,美国Z Corp公司基于麻省理工学院的3维喷墨打印技术,研制出了3D打印机Z402号。

  承办单位:中国科学技术馆

  2、3D打印详解

  美国、英国政府最近宣布将在教育行业大面积推广3D打印技术。3D打印应用到教育行业之后,学生们将有机会将自己的设计变为实物交给老师或进行讨论研究,打印出来的原型物品也将更直观地帮助他们进一步改善作品。

  光固化成形(SLA)其原理是利用紫外激光固化对紫外光非常敏感的液态树脂材料(性能类似于塑料)予以成形,工艺过程如下图所示。

  激光选区熔化(SLM)的工作方式与激光选区烧结类似。该工艺利用光斑直径仅为100μm以内的高能束激光,直接熔化金属或合金粉末,层层选区熔化与堆积,最终成行具有冶金结合、组织致密的金属零件,工艺过程如下图所示。

  立体喷印(3DP)是一种利用微滴喷射技术的增材制造方法,过程类似于打印机,其工艺过程如下图。

  1、航空航天

  1) 激光选区熔化(SLM)

  20、曲奇饼干

  有两种方法可以实现3D打印合成食品,一种是:将食材糊然后3D打印成新形状。第二种是:将基本化学材料糊混合,用数字食谱将原食材3D打印成“真实食物”的复制品。

  一个14岁小男孩被诊断为右股骨下段骨肉瘤术后复发。考虑到年轻患者的生长的需要,医院利用增材制造技术为病人定制一个单膝关节替代物。手术一周后,病人可以缓慢行走。12月后,该患者关节功能恢复良好。

  4、3D打印的基本原理

  4、集成电路

  中国科技馆将为广大观众提供一个窗口,让所有关心3D打印技术的人们增加对3D打印的感性认识,让新技术走入千家万户,让更多地观众能够在中国科技馆了解我国最前沿最尖端的科学技术发展,真正感受科技的魅力。

  信息化时代离不开集成电路,超大规模三维集成电路的发展决定了信息化时代的步伐。未来的增材制造技术,将可在制造过程中灵活实现多种材料在宏观、微观、纳观甚至原子尺度上的任意复合和内部结构任意控制,这使得超大规模三维集成电路的增材制造将成为可能。美国OPTOMEC公司采用增材制造技术制造的三维集成电路和集成控制电路的无人机机翼,其中空间互联电路采用金属银、金等的纳米粉打印。

  华中科技大学为一位老人定做义齿修复体以达到恢复咀嚼功能的目的。传统制造工艺需要大量技术熟练的义齿技工才能完成,并且需要一周以上的时间。利用激光选区熔化增材制造的义齿的金属基冠全部由设备自动完成,无需熟练技工,也为患者医治节省了大量时间。

  3D打印无论是在成本、速度和精确度上都要比传统制造好很多,并且3D打印技术本身非常适合大规模生产,所以3D技术给制造业带来很多好处,包括质量控制问题。

  一位 83岁的老人由于患有慢性的骨头感染,因此换上了3D打印机“打印”出来的下颚骨,这是世界上首位使用3D打印产品做人体骨骼的案例。

  图1

  家电 : 各种家电产品的外形与结构设计,装配试验与功能验证,市场宣传,模具制造。

  医疗 : 医疗器械的设计、试产、试用, CT 扫描信息的实物化,手术模拟,人体骨关节的配制。

  汽车、摩托车 : 外形及内饰件的设计、改型、装配试验,发动机、汽缸头试制。

  SLA 3D打印有打印形状广泛,成型速度快,精度高的特点, 应用的领域几乎包括了制造领域的各个行业,在医疗、人体工程、文物保护等行业也得到了越来越广泛的应用。 目前主要是应用于新产品开发的设计验证和模拟样品的试制上,即完成从产品的概念设计→造型设计→结构设计→基本功能评估→模拟样件试制这段开发过程。对某些以塑料结构为主的产品还可以进行小批量试制,或进行一些物理方面的功能测试、装配验证、实际外观效果审视,甚至将产品小批量组装先行投放市场,达到投石问路的目的。 快速成型技术的主要应用各行业的应用状况如下 :

  3.升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型;

  使UG、PROE数字模型直观化,降低错误修复的成本。

  由UG、PROE数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具。

  可以加工结构外形复杂或使用传统手段难于成型的原型和模具。

  联系方式:13798351383 李先生 QQ:377091695

  SLA 3D打印用途

  光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过了长时间的检验。

  轻工业 : 各种产品的设计、验证、装配,市场宣传,玩具、鞋类模具的快速制造。

  4.将原型从树脂中取出后,进行最终固化,再经抛光、电镀、喷漆或着色处理即得到要求的产品。

  相比热熔型材料的3D打印成型工艺(如FDM),SLA成型精度高,表面平整。

  为实验提供试样,可以对计算机仿真计算的结果进行验证与校核。

  通讯产品 : 产品外形与结构设计,装配试验,功能验证,模具制造。

  SLA工业光固化3D打印原理

  国防 : 各种武器零部件的设计、装配、试制,特殊零件的直接制作,遥感信息的模型制作。

  1.通过UG、PROE等软件设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;

  航空、航天 : 特殊零件的直接制造,叶轮、涡轮、叶片的试制,发动机的试制、装配试验。

  深圳市风谷三维科技有限公司:承接各类3D手板打印,可打印白板件,透明件,ABS高韧性件,耐高温件,铝合金,尼龙玻纤CNC手板,抄数绘图,3D建模,硅胶软胶复模等。风谷三维科技手板模型3D专业SLA激光快速成型,良心企业,价格优惠,效率快,服务佳,质量有保证,全国顺丰包邮!SLA光固化3D打印(Stereo lithography Apparatus)工艺也称光造型、立体光刻及立体印刷,其工艺过程是以液态光敏树脂为材料充满液槽,由计算机控制激光束跟踪层状截面轨迹,并照射到液槽中的液体树脂,而使这一层树脂固化,之后升降台下降一层高度,已成型的层面上又布满一层树脂,然后再进行新一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到1个三维实体模型。该工艺的特点是:原型件精度高,零件强度和硬度好,可制出形状特别复杂的空心零件,生产的模型柔性化好,可随意拆装,是间接制模的理想方法。

  可联机操作,可远程控制,利于生产的自动化。

  精密铸造:在由于光固化快速成形设备使用的液态树脂是由碳、氢、氧等元素组成的高分子材料,在700℃以上的温度下,可以完全烧蚀,没有任何残留物质,对于失蜡法制造精密铸造模型来说,这是一个非常重要的性能。 目前在珠宝行业可代替人工雕蜡过程,可大大提高成型精度和效率。

  2.激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;

  SLA的技术优势

  但是随着印刷书籍的出现,又开始了另一种传统:孤立的读者和他的私人眼睛。口头变得柔和,读者和他的反应与社会背景分离。读者在他自己的思想中退休,从十六世纪到十六世纪目前,大多数读者对他人的要求是他们的缺席,或者如果不是这样,他们的沉默。在阅读中,作家和读者都会陷入一种反对社会存在和意识的阴谋。

  如果我们以这种方式看待它,所有创新回到印刷机(甚至更远)的概念都是相同的,只有技术发生变化。简而言之,该技术只是将想法和设计转化为产品的原因。随着技术变得更加强大(现在这是一个恒定的几何增长),我们将看到越来越多的发展似乎是科幻小说。该过程使用可用技术将想法转化为产品。一旦我们最早的祖先意识到需要沟通,他们就会开发语言并开始绘制图片和图表。在此后的某个时刻,出现了第一批书面语言,学习的班级,文士和僧侣开始费力地写下口头传承的故事。突然之间,我们通过这种新技术“写作”将想法转化为可以被后来学者保存和阅读的书籍。

  当我们第一次开始讨论3D打印时,他并不知道所生产的物体可能具有除原件之外的颜色或者可能具有可用的移动部件。当被告知扳手然后建造房屋时,他说,“这太棒了”,然后,当他读到“3D打印大傻瓜指南”的开头时,他说,“这不仅令人惊叹,而且还是一个游戏改变者“ 正如我之前写的,他非常聪明!他立即认识到这项创新有可能对制造业和建筑业产生巨大影响。

  为了解决这些问题,我意识到我不仅要将我对打印的理解改变为仅仅是二维的过程,而且要重新评估通信和制造的整个过程。我们始终将产品开发过程理解为人类对产品的概念,然后是设计文档(绘图或书写),然后是产品制造规范,随后可能是生产原型,然后是实际制造的产品。整个过程既耗时又昂贵。

  导语:听起来像科幻故事中的东西?它确实对我有用,即使在我看到一个令人兴奋的(当时)视频的三维打印扳手,然后是一个真正可以放入人类的气管。

  总结:人们只能梦想随之而来的诉讼以及确定可能侵犯版权的项目所必需的研究。正如我的工程师朋友所说,这确实是一个改变游戏规则的人。

  几个世纪以来,我们通过技术的进步(打字机,文字处理,高速打印机和自助出版)在从创意到生产方面取得了逐步进步,但它仍然是将想法转化为二维输出的过程。 然而,现在我们已经开发出技术,我们可以将涉及三维产品的想法直接转换为产品本身。因为我们已经将实际生产该产品的设备称为“打印机”数百年,我们现在将生产新型产品的设备称为“3-D打印机”。即使在继续加强这项新技术的同时,还有许多值得学习的东西。有许多输出介质(类似于带有二维打印机的纸张)可以使用。从泡沫聚苯乙烯型材料到金属 - 并且技术的发展将很快。

  我不是唯一一个对“三维物体”被“印刷”的概念有困难的人 并且是用可移动部件印刷的。在我当地的Barnes and Noble与一些退休的IBM工程师讨论这个问题时,我发现他们比我没有看过视频时更加怀疑。其中之一,一个非常聪明的人,曾在人工智能领域工作多年(并开发了第一个被认为是医学上合理的EKG饲料的计算机分析),自从退休到特定的商业应用程序后,他的计算机使用受到限制,游戏(不在线)和构建PC,没有社交媒体,也没有跟上3D打印这样的发展。

  在实际生产生活中,它运用得较为普遍。无论是航空航天科技,亦或是建筑领域、医疗行业,甚至是食品产业、生活用品,都能发现它的影子。

  中国制造

  通常,传统的加工制造无法完成任务,而且,它们本身就是专业性相当强、高成本、高附加值的行业,加工门槛高,只有非常有实力的公司才能涉足。

  3D打印机

  1.与传统制造方式相比,它带来的是生产加工理念的革命性变革。它不光可以缩短加工制造周期,而且能大幅降低生产成本,特别是突破了传统加工制造方法对复杂形状加工的限制,使人类在加工领域实现了自由。

  3D打印骨骼

  1988年,该公司推出了基于SL(立体声光刻)技术的3D工业打印机。在此后的许多年里,世界上又先后推出了SLA(光敏树脂选择性固化)、SLS(粉末材料选择性激光烧结)、FDM(熔融沉积)、3DP(3D喷射打印)、PUG(真空注型)等3D打印成型技术。

  三、虽然“3D打印”有着传统制造方式无可比拟的优势,但它存在的一些缺陷,却实实在在地制约着它的发展。

  3D技术发展脉络

  成本曲线

  二、3D打印技术的流行和重视,不是没有原因的。

  3.打印精度高。由于3D打印成品的可塑性非常强,从二维到三维均可实施,且由于它的生成原理属于逐层打印,即完成一层再进入下一层的打印加工,根据打印机的加工精度和特性,可以精确到600dpi,每层只有0.01的误差,这个精度是相当高的。

  工业级与开源精度对比

  事实上,纤维材料的强度是钢筋混凝土强度的3至5倍,但它会被旧标准评定为不合格的建筑,这显然不太合理。重点突破高性能材料研发,提升增材制造专用材料质量,开展增材制造专用材料特性研究,鼓励优势材料生产企业从事增材制造专用材料及研究成果转化,这才是目前的重中之重。

  当然,在航空航天领域的应用也非常广泛。2016年4月,欧洲飞机制造商空客公司收到了他们的下一代空中客车A320neo客机的LEAP-1A发动机,这是他们正式将使用3D打印的合金燃料喷嘴用于飞机引擎上。

  2011年,荷兰医生给一名83岁老人安装了一块用3D打印技术打印出来的金属下颌骨。

  1986年,Charles W.Hull在全球建立了一家生产3D打印设备的公司,即3D Systems。它开发了现在通用的STL文件格式。

  REPRAP开源项目是由英国巴斯大学Adrian Bowyer等人所发起,主要目的是希望能够独立设计和制作出一款面向所有普通用户的3D打印机。经过多年发展目前已经发展出三个版本。可以说,它们已经规格化,入门快,成本低,就算是一个普通人也可以按照说明书自己攒一台。这导致简单桌面级的3D打印设备套件竞争十分激烈,而且产品的层次不高。但是这个行业的未来是在工业级市场。

  若将3D技术应用于建筑业,当然可以大大提高工作效率。但是,在质量检验和工程验收时却犯了难,因为,目前我国根本就没有相应的技术标准去完成验收,而只能采用传统建筑业的标准。但是用传统标准,显然是无法完成这项工作的,因为,3D打印建筑是用纤维材料打印完成,可能根本就没有钢筋,但是现行的国家标准是决不允许发生这种事情的。

  其中,3D打印是该计划的重中之重,在计划全文中共出现6次,贯穿于背景介绍、国家制造业创新能力提升、信息化与工业化深度融合、重点领域突破发展等重要段落,并融入于推动智能制造的主线,体现出我国对3D打印的重视程度,彰显了在战略层面我国对制造业发展面临的形势和环境的深刻理解。

  一方面,建模和打印技术让它有较低成本的可能,另一方面,成本与定制件的大小体积成正比关系。这就是说,同样体积同样材质的东西,成本相差并不大。

  3D打印技术,萌芽于上世纪末期,发展于本世纪初。它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

  最早实现它的,是一个美国人。1983年3月9日,Charles W.Hull发明了世界上第一台3D打印机。

  从批量生产的角度看,均摊的无非是建模的成本,这使得批量生产和单件生产的成本相关不大。

  5.它是“中国制造2025”计划中的重要一环。为了打造具有国际竞争力的制造业,提升我国综合国力、保障国家安全、建设世界强国,我国政府推出了实施制造强国战略第一个十年的行动纲领,即《中国制造2025》计划,确定以智能制造为主攻方向,涵盖机器人、物流网等基于现代信息技术和互联网技术等各类产业。

  4.个性化定制是其极大优势。传统的工业制造,都是大批量地生产,这才能保证产品成本足够的低;否则,老百姓买不起,生产的东西卖不出去,就没有市场。但3D打印技术的出现,让个性化定制成为可能。

  3D打印航天零件

  打印材料受制于人

  2.在特殊领域的广泛运用,是3D打印技术的显著特点。在医疗领域,特别是骨骼重建方面,3D打印技术使用得特别多。如有一位患者盆骨已经坏死,上海交大附属第九人民医院用人工骨骼材料3D打印了一个骨盆,并且成功地移植到了患者体内,最终患者成功康复。

  此外,许多民营资本也在蠢蠢欲动,想赶快买上车票,生怕错过这趟车,意图分取一杯羹。

  一、什么是3D打印?

  因为对于任何一种制造技术而言,材料都是重中之重,都是基础中的基础。如果不能在材料端的研究取得突破,那么后续的技术发展也难以实现。

  几年前,3D打印技术大火,整个社会都在讨论它,很多高校借此东风开设了相关专业,很多地方政府在财政补助、土地供应、贷款贴息、用水用电价格等各个方面都出台了非常优厚的政策。

  2.材料障碍是关键。我国的3D打印技术经过几十年的发展,技术逐渐成熟,实际应用成效显著,但是核心技术、核心零部件仍然受制于人,特别是关键打印材料技术还比较欠缺,基本依赖进口的局面并未得到有效改观,对3D打印产业的可持续发展造成致命影响。

  特别是在前沿领域的投入不足,核心技术缺乏问题非常严重。比如在纳米3D打印技术方面,我国研发的力量不够,基础研究不多,无法创造未来优势技术。

  3D打印的心脏

  其基本原理是这样的:利用3D建模软件生成STL或STP模型文件(它们是3D打印机的标准三角语言)。3D成型机通过读取、解析接收的STL文件,构建出由一系列三角形组成的网状的3D模型,然后输出指令,进行打印,制成实物模型,有人把这种技术称为“增材制造”。(一般人理解起来可能有些复杂,下面会有具体实例说明)

  美好蓝图才刚刚画好,突然一个激灵过来,梦被惊醒。3D打印的这股热潮逐渐冷却,在各类媒体上的曝光度少之又少,这不免让大家又重新审视起来,它究竟怎么了?

  我国的歼-20战机的制造也运用了3D打印技术。

  此文章为环宇看点原创,特此声明!

  1.成本较高。高精度的3D打印机都是比较大型且昂贵,技术专利基本掌握在国外公司手中,要购买和取得技术许可都需要花费大量金钱。从3D打印应用的领域看,它主要用于航空航天、人体器官医疗、古董配饰等行业,这些都属于高端制造业。

  3.产品层次低。除了几个大型国有企业外,在参与并发展3D技术的都是较小的私人企业。为求企业生存,它们往往投入不多,抵御风险的能力也不足,特别是在研发上的经费更是捉襟见肘。于是,它们往往采用开源代码来完成工作。

  2017年3月,在沙特阿拉伯国王的见证下,我国建筑3D打印公司盈创与沙特Al Mobty承包公司签署一百亿人民币的合同,盈创将在沙特建造三千万平方米的3D打印建筑,用于解决该国持续增长的住房危机。

  事实上,3D打印技术的发明,就是Charles W.Hull为了缩短创建产品原型所需要的漫长时间的结果。